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Algorithms for onboard attitude determination and control of the Solar,

Anomalous, and Magnetospheric Particle Explorer (SAMPEX) have been

developed. The algorithms include: spacecraft ephemeris and geomagnetic

field models, attitude determination with 2 degree accuracy, control of pitch

axis pointing to the sun and yaw axis pointing away from the earth to achieve

control of pitch axis within 5 degrees of sunline, momentum unloading, and

nutation damping. The closed loop simulations were performed on a VAX

8830 using a prototype version of the on-board software.
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I. INTRODUCTION
Q

The Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX),

scheduled for launch in June 1992, is the first in the Small Explorer (SMEX) series of

spacecraft. The SAMPEX software algorithm design philosophy is to develop the

common aspects of the attitude determination and control (ADC), such as sensor

data processing, attitude determination, ephemeris propagation, and command and

telemetry processing, in as generic a form as possible.

SAMPEX, a 169 kg payload, will be launched into a 580 km circular orbit

with 82 degrees inclination by a Scout launch vehicle. The spacecraft attitude must

simultaneously satisfy a variety of on-orbit pointing requirements. The scientific

instruments are located on the +z side of the spacecraft (Figure 1), and detect the

impingement of magnetically aligned solar and cosmic particles. The spacecraft z-

axis (instrument boresight) should therefore point within 15 degrees of local vertical

(zenith) in the polar regions. Due to damaging space dust and orbital debris, the

experiment boresight is required to point at least 45 degrees away from the spacecraft

ram velocity vector. The spacecraft has fixed solar arrays with all cells on the +y

side. Pointing of the +y axis to within 5 degrees of the sun line is desired during the

entire mission. Attitude knowledge to 2 degrees or better is also required. [1]
yAW, Z
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Figure 1. Spacecraft Mechanical Configuration

The ADC sensors include a two-axis fine digital sun sensor, five coarse sun

sensors, and a triaxial search coil magnetometer. All sensor data are acquired and

processed at the ADC sampling frequency, 2 I-Iz. Three magnetic torquer bars and a

pitch axis momentum wheel are used as control actuators. The sensor data

processing algorithms are presented in Section II.

There are two science pointing modes - vertical pointing and orbit rate

rotation. The computation of the pitch error angle is different for the two modes.

The on-board attitude determination algorithm is based on the sun and magnetic

field data only. The rate information will be generated without gyros and the nadir
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vector will be obtained without earth sensors. Therefore accurate spacecraft

ephemeris and magnetic field vector knowledge are essential. The detailed

description of the attitude determination is given in Section III.

The vertical pointing mode minimizes the angle between the spacecraft z-

axis and the zenith vector within the sun pointing constraint. However, this mode

has the undesirable property of pointing the experiment boresight directly into the

ram vector twice per orbit when the orbit plane is parallel with the sun vector. The

orbit rate rotation mode does not maintain the instrument boresight as close to the

zenith vector as the vertical pointing mode, but it satisfies the spacecraft pointing

requirement as well as the velocity vector avoidance criterion. The control scheme

for each of these modes is described in Section IV. The digital sun pointing only

mode, which does not perform pitch axis control, is used for reacquisition and is

also described in this section.

This paper also discusses the attitude dynamic simulator and results used

for analysis in Section V, and presents a summary in Section VI.

II. SENSOR DATA PROCESSING

Sun Sensor Data Processing

The fine sun sensor (FSS) is used for on-board attitude determination and

sun pointing. It is a two-axis sun sensor with a field of view of +_ 64 degrees. It

outputs 8 bits of data in gray code for each axis with a resolution of 0.5 degrees. After

the gray coded data is converted to binary, the two binary counts (N a and N b) are

converted into coordinates of the sun's image within the sensor, i.e.

x = 0.002754 N a - 0.350625

z = 0.002754 N b - 0.350625

A sun vector (s) in the spacecraft body frame is computed using the following

equations [2]:

-s = 1

x + z 2 + t2

-n x

_/t 2 - (n 2- 1) (x 2 + z 2)

-nz

Where: n - the refraction index of the FSS glass

t - the glass thickness (cm)

x, z - measurements in the sensor frame (cm)

The above equations are derived based on the assumptions : 1) the sensor frame x, y,
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z is aligned with the body frame x, y, z axes respectively, 2) the misalignment

between sensor frame and the body frame is within tolerance, 3) pitch axis is normal

to FSS. However, the FSS algorithm has means to correct 90 degree and 180 degree

misalignment of the x, z axes.

The coarse sun sensor (CSS) is used for initial acquisition, reacquisition,

and on-board attitude determination when the sun is out of the field of view of the

FSS. The CSS system consists of five eyes: one pitch eye mounted on the center of

the spacecraft facing the negative pitch(y) axis, two roll(x) eyes and two yaw(z) eyes.

Each pair is mounted on the solar array panels facing 180 degrees apart along the

axis. The roll and yaw eye outputs are differenced. All outputs are converted to 12

bit words. When divided by the maximum expected output these signals represent

the x, y, and z components of the sun vector in body frame. When the negative

pitch eye is illuminated, the normalized coarse sun vector (s c) in body frame is

given by the following equation:

SC _/x 2+y2+z 2

and when the negative pitch eye is not illuminated, s c is given by the following

equation:

Sc= Yl_x2_ z 2

Z

when x2+z 2 >= 1, the above equation will become:

- 0
Sc yX2 + Z2 z

Magnetometer Data Processing

The triaxial search coil magnetometer is used for on-board attitude

determination and momentum management (sun pointing and momentum

unloading). It outputs 12 bit words for each axis. Its resolution is 0.3125x10 -7 tesla

and its range is + 640x10 -7 tesla. The earth's magnetic field in the body frame is

computed using the following equation [2]:

B = [Scale]V + Bias - [C]dm

where: B - magnetic field vector (tesla)

[Scale] - scale factor matrix with all off-diagonal elements being
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V

Bias

[q
dm

zero (tesla/volts)

magnetometer reading (volts)

constant magnetic field bias (tesla)

torquer bar & magnetometer coupling matrix (tesla/A-m 2)

dipole moment of torque rods computed from the

torque magnetic assembly current feedback (A-m2).

The SAMPEX algorithm contains a procedure to calibrate the torque-rod/

magnetometer coupling matrix ([C]). This procedure is excited periodically via

ground command. It turns off all torquer bars first and obtains the uncontaminated

magnetometer readings (Bo). Then it sequentially turns on each torquer bar with a

10 A-m 2 excitation and obtains the contaminated magnetometer reading (Bc).

Finally [C] is computed using the following equation:

Be = Bo + [C]dm.

This technique enables attitude determination to be performed in the presence of

significant contamination of the magnetometer signal during magnetic actuation.

Momentum Wheel Speed Processing

The momentum wheel is used for pitch error angle control. The

momentum wheel speed is used to generate the system momentum vector for

momentum management. The processing of momentum wheel speed simply

multiplies the raw tachometer signal by a scale factor and corrects it with a constant

bias if necessary.

Ill. ATTITUDE DETERMINATION

The objective of on-board attitude determination is to produce an estimate

of the inertial-to-body transformation matrix for the system, a representation of its

three-axis attitude. The attitude determination process includes: generation of the

spacecraft position vector, sun vector and earth's magnetic field vector in the

inertial frame, construction of the transformation matrix, and computation of the

pitch error angle, error rate and body angular momentum for control.

The attitude determination algorithm is disabled when the sun vector

aligns with the earth's magnetic field vector.

During eclipse, when the sun information is not available, the body pitch

axis is assumed to remain inertiaily fixed at the value given by the second row of the

last inertial-to-body transformation matrix computed before entering eclipse. This

vector J and j, a y-axis unit vector in the body frame, are substituted for the inertial
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and body sun vectors in the construction of the transformation matrix.

Figure 2 illustrates the scheme of construction of the inertial-to-body

transformation matrix.

S
Solar

Model

su° Is 'Sensors e

Time e

('State Vector_ 'Orbit ___ Mag Fld I I D
_Uplink J I Generator Generator

] Magne_ I btometer

Save [Row 2
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Figure 2. Construction of Inertial-To-Body Transformation Matrix

Reference Vector Generation

Although pointing requirements for SAMPEX are modest, accurate on-

board spacecraft ephemeris and magnetic field vectors are required to meet the

design goal of 2 degrees accuracy for on-board attitude determination.

The spacecraft ephemeris is propagated employing the fourth order Runge-

Kutta integration method with integration step size equal to the ADC sampling

frequency. The dynamic equation for generating the spacecraft ephemeris includes

the perturbations due to the zonal gravity harmonics and the atmospheric drag [3]:

= _ R + a8 + ad
IRI 3

where: R

gt

IRI

ad

- spacecraft position vector (km)

- earth's gravitational constant, 3.9860064 x 105 (km3/sec 2)

- magnitude of R (km)

- acceleration due to zonal gravity harmonics (km/sec 2)

- acceleration due to atmospheric drag (km/sec 2)

The nonspherical contribution to the gravity acceleration is computed with

the spherical harmonic model using zonal harmonic coefficients up to J4.
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where

R(1) (fxy2+fxy3+fxy4) 1

I'tR2 mR(a ) (fxv2+fxy3+fxy4) /

ag=2"0/-RlSL R(S)(fz2+fz4)+fz3 .J

fxy2 = 3.0 J2 (5.0 Zr 2- 1.0)

fxy3 = 5.0 J3 (Re/I R i ) (7.0 Zr3 - 3.0Zr)

fxy4 = 3.75 J4 (Re/J R I)2(21.0 Zr 4-14.0 Zr 2 + 1.0)

fz2 = 3.0 J2 (5.0 Zr 2- 3.0)

fz3 = J3 (Re/IR I) (Z r (35.0 Zr3- 30.0 Z r) + 3.0 JR I)

fz4 = 1.25 J4 (Re/iR I) 2 (63.0 Zr4- 70.0 Zr 2 + 15.0)

J2 = 1.0826271 x 10 -3

J3 = -2.5358868 x 10 -6

J4 = -1.6246180 x l0 6

R e = 6.37814 x 103, earth radius at equator (km)

Zr _ R(3)
IRi

The drag model is

a d = [-pd(l+f)Ac/2m) I l_rl 1_r

where: p

where [

d

f

Ac

m

II rl

1_ r

- atmospheric density at the spacecraft's altitude computed

using a Jacchia-Roberts density model (kg/km3), [4]

- drag coefficient (nominally 2.2)

- drag scale factor

- cross sectional area of spacecraft perpendicular to the

direction of motion (kin 2 )

mass of the spacecraft (kg)

magnitude of 1_r (km/sec)

velocity of the spacecraft relative to the rotating

atmosphere (krn/sec)

Z

_, _ IT is the inertial velocity of the spacecraft and 0 is the rate of rotation
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of the earth ( 7.2921151467 x 10 -5 rad/sec).

The state vector, drag scale factor and parameters to specify the Jacchia-

Roberts model are reinitialized every 24 hours via ground command. They are

generated by Flight Dynamic Support System.

The earth's magnetic field is generated using the spherical harmonic model

with order eight [2]. The Gaussian coefficients are updated to epoch 1985. The

position of the sun is computed using a rapid analytical technique [2]. The

parameters are updated to epoch 1991. Both the earth's magnetic field vector and

sun vector are used to construct the transformation matrix.

Transformation Matrix Construction

The transformation matrix [A] is constructed by employing the standard

TRIAD method [5]. This method only requires two body frame vectors and two

reference frame vectors. The sun vector is more heavily weighted than the

magnetic field vector except when the two vectors are perpendicular. The TRIAD

method is given by:

[A]=[P][03T

where [P] and [Q] are orthogonal matrices. [P] is a matrix constructed using the sun

(s) and earth's magnetic field (b) vectors in the body frame, and [Q] is a matrix

constructed using the sun (S) and earth's magnetic field (B) vectors in the inertial

frame:

sxb sx (sxb)

P=[s, Isxb[ ' [sxbl ]

SxB Sx(SxB)

Q=[$' ISxBl' ISxBI ]

Computation of Angular Velocity

The angular velocity vector along with the momentum wheel speed is

used to compute the system angular momentum for momentum management.

The angular velocity matrix is determined from the matrix identity:

0 foz

"foz 0

-fOx

-%
fox = [/it][A] T

0

where [A] is the derivative of the inertial-to-body transformation matrix [A], and is

estimated by simple differencing of sequential values of [A] as decribed in the
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following equation :

[.&]_ A[A] = Ai" Ai-,
At At

Where At is the difference between the current time and the time when the

previous sample is taken. The angular velocity vector is formed using the average

of the two off-diagonal elements for each of the rates cox, coy, and coz.

Computation of Pitch Error Angle, and Error Rate

Both the pitch error angle and error rate are used in the computation of the

momentum wheel control torque.

In vertical pointing control mode, the pitch error angle is computed using

the following equation:

e = tan-l[-r(1)/r(3)]

where r(1) and r(3) are x and z components of the spacecraft position vector in the

body frame, respectively. This vector is obtained by transforming the spacecraft

position vector in the inertial frame to the body frame by using the transformation

matrix [A].

In the orbit rate rotation mode, the spacecraft y-axis is desired to point at

the sun while the z-axis rotates at one revolution per orbit in a plane perpendicular

to the sun vector. At the same time, the z-axis is desired to point as close to north

as possible at the northernmost point in the orbit, south at the southernmost point,

and parallel to the equator at the equatorial crossings.

Let 0 be the spacecraft orbit angle ( measured from the northernmost point

of the orbit), Figures 3 and 4 show the desired pointing direction for the z-axis for

the two cases S ,* N > 0 and S * N < 0 respectively, where N is the orbit normal in the

direction of R x l_ and S is the inertial sun vector.

SxW

S, Y

X

v

W

SxW

0

S, Y

v

W

Figure 3. Desired Spacecraft Orientation Figure 4. Desired Spacecraft Orientation

forS*N >0 for S,, N < 0

In these figures, W is a unit vector in the direction of NP x S, where NP is a
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north pole unit vector, [0, 0, 1] T. An inertial target (U) for z-axis pointing will be

given by :

U=cos0SxW+sin0 W forS•N<0

U=cos0SxW-sin0 W forS•N>0

where W -
NP xS

INPxSI

The sine and cosine of the orbit angle are determined from the spacecraft

position (R) and velocity (1_) vectors. If AN is a unit vector in the direction of NP x

N and locates the orbit ascending node, and NMP is a unit vector in the direction of

N x AN and locates the northernmost point, then sin0 and cos0 are defined by:

sin0 =
Ro AN

IRI

cos0 =
R • NMP

IRI

The test for the sign of the dot product of the sun and the orbit normal

vectors will automatically change the spin direction when the sun passes through

the orbit plane. The pitch error angle for control can be computed using:

e = tan-l(-u(1)/u(3))

where u is obtained by transforming the target vector U in the inertial frame to the

body frame by using the transformation matrix [A].

The pitch error rate is estimated by differencing of sequential values of

pitch error angle.

IV. CONTROL LAWS

In the two science control modes, z-axis pointing is accomplished by

controlling the momentum wheel speed, and sun pointing is accomplished by

magnetic torquing. In addition to pointing control, the magnetic torquer bars

provide nutation damping.

When the sun vector is parallel to the earth's magnetic field vector (at

singularity), the momentum wheel speed is held constant at the speed before

singularity occurs, and all torquer bars are turned off.

During eclipse, all magnetic torques are turned off, and momentum wheel

is controlled using the normal control law except in the singular case described

above.
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In the sun pointing only control mode, the momentum wheel speed is

held at a commandable rate to provide a momentum bias, and the magnetic torquer

bars are activated for sun pointing as well as nutation damping.

Momentum Wheel Control Law for Science Pointing

The goal of controlling the momentum wheel speed is to control the

motion of the spacecraft about pitch axis (y-axis), i.e. z-axis pointing control. The

torque to the momentum wheel is driven by rate and position error:

Ty = Iy (co_e + 2_con_)

where Iy is inertia (N-m-sec2), con is the control frequency and is set to 0.01 (rad/sec),

is a damping constant and is set to 0.707, e is the pitch error angle (rad), and 6 is the

pitch error rate (rad/sec). Both e and 6 are products from the attitude determination

algorithm.

Magnetic Control for Science Pointing

SAMPEX attitude control involves a momentum bias along the spacecraft

y-axis and the pointing of this axis at the sun. Let H o be a desired level of angular

momentum, with j a y-axis unit vector and s the sun unit vector in the body frame.

Ideally, we would like to have the system angular momentum vector (H) equal to

both H o j and H o s. This will be true only if the y-axis is pointed at the sun,

momentum is at the desired level and there is no nutation.

We now consider two momentum error vectors, H - H o j and H - H o s and

add them together to form an" excess" momentum vector to be "unloaded" by the

magnetic torquing system. Let AH = 2H - H o (j + s). One common method of

momentum unloading is to let dm = AH x b where dm is an applied magnetic

moment, AH is the undesired system momentum and b is the magnetic field vector

in the body frame. In our case, we let

where

dm = Mag_gain (AH x b)

Mag_gain - an appropriate control gain (A-m2/N-m-sec-tesla)

AH - undesired system momentum (N-m-sec)

b - Measured earth's magnetic field (tesla)
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In more detail, this becomes

i j k

dm = Mag__gain 2Hx- Ho Sx 2I-Iy - Ho (1+ Sy) 2Hz - Ho Sz

Sun Point Only Mode ( Software Safe Hold)

The sun pointing only mode is a non-science control mode. It is executed

at computer power on, or when the spacecraft pitch axis drifts away from the sun

line by more than 15 degrees.

The goal of this control mode is to remove any excess spacecraft body spin

rates, and to precess the spacecraft pitch axis to within 15 degrees of the sun line. In

this mode, there is no pitch axis control and the momentum wheel speed is held

constant. The torque signal in N-m is given by:

Ty = Gnaw(fixed_rate - v)

where v is the momentum wheel speed (rad/sec), and Gna w is momentum wheel

gain in N-m-sec/rad.

The roll and yaw torquer bars are used for spin rate control (spin control)

and momentum unloading (Bdot control). In addition to these two goals, the pitch

axis torquer bar is used to precess the pitch axis toward the sun line ( y-axis

precession control). The following equation describes these three controls:

fb(i ) b(2)] _0]
drn = - GBdot(b-bp)/At + SCyG + SCzG s b(1) + SIGN(bs)GpFeF 1

b ) 0 0

where GBdot

Gs

Gp
bs

SCy

SCz

F e

Fp

Bdot control gain (A-m2-sec/tesla)

spin control gain (A-m2/tesla)

- y-axis precession gain (A-m 2)

- the second element of bxs, s is the body sun vector and

b is the measured earth's magnetic field vector (tesla)

- previous measured earth's magnetic field vector (tesla)

- y-axis spin control flag, values can be -1, 0, 1

corresponding to despin, off, spin

- z-axis spin control flag, values can be -1, 0, 1

corresponding to despin, off, spin

eclipse flag, 1 = no eclipse, 0 = eclipse

y-axis precession flag, 1 = y-axis precession enable
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0 = y-axis precession disable

At - the difference between the current time and the time

when the previous sample is taken (sec)

The first term of the above equation describes the Bdot control for the momentum

unloading. The dipole moment for each torquer bar is proportional to the rate of

change of the measured earth's magnetic field along each axis. The second and third

terms describe the spin control with the second term for y-axis spin and the third

term for z-axis spin. These two spin controls will not be on simultaneously. The

control options spin, despin, or off are selected by ground command. The last term

describes y-axis precession control. The dipole moment for this control is driven by a

gain with a polarity determined by the cross product of the measured sun and

magnetic field vectors. The precession dipole moment is not computed when the

spacecraft is in eclipse and can be disabled by ground command. All gains are

modifiable via ground command.

V. SIMULATION

The dynamic simulator has two parts: 1) system state model (SSM) and 2)

on-board attitude determination and control. The on-board attitude control and

determination has been discussed in sections II, III, and IV. The SSM includes the

kinematics (including the quaternion and direction cosine matrix), the equations of

motion, and the sensor models. Figure 5 below describes the dynamic simulator.

Figure 5. The Dynamic Simulator
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Runge-Kutta integration on the derivatives of the system momentum and wheel

momentum, the spacecraft position and velocity vectors, and the quaternion.

Momentum

The system momentum is computed by integrating Euler's equation [2]:

I:I = Taero + Tgg +Tmu -o) xH

where: H

Taero

Tgg

Trm

system angular momentum (N-m-sec)

aerodynamic torque (N-m)

gravity gradient torque (N-m)

magnetic unloading torque (N-m)

spacecraft rate (rad/sec)

The Pictorial Solar Pressure (PSP) program is used to compute the

aerodynamic torques on SAMPEX. PSP takes into account the effects of shadowing

on the spacecraft. The density is selected for a worst case solar cycle.

Taero = conv[(1/2)pV2CdTnorm]

where: cony

P

V

Cd

conversion factor

16387.3 N - m - sec 2

(gin / cm 3)km 2 in 3

atmospheric density (gm/cm 3)

orbit velocity (km/sec)

coefficient of drag

normalized torque output from PSP (in 3)

The gravity gradient torque is computed by [2]:

where:

Tgg = 3(_t/IRl3)[r b x ([I]. rb)]

rb

IRI

earth's gravitational constant

(3.98601 x 105 km3/sec 2)

zenith vector in body frame

magnitude of radius vector (kin)

inertia tensor (N-m-sec 2)

The magnetic unloading torque is determined from:

Tmu = klMli m x B
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where B is the earth's magnetic field strength in tesla computed using a tenth order

spherical harmonic magnetic field model [2] and Mli m is the limited magnetic dipole

moment with a torquer bar limit of 20 A-m 2. The magnetic dipole moment is

determined from the sun pointing and nutation damping error vectors discussed

earlier in Section IV. The constant k 1 is a conversion factor (1.0 N-m/A-m2-tesla).

The ca × H term is the gyroscopic reaction torque. It is the cross product of

the body rates and the system angular momentum vector.

The system angular momentum is determined from the following integral

H = ]ItI dt = I(Text - ¢ox H)dt

where Tex t is the sum of the external torques on the spacecraft.

Similarly, the reaction wheel angular momentum is the integral of the

applied wheel torque

h w = f(T w + TfrlcUon}dt

where T w is the commanded wheel torque and Tfriction is the torque due to friction.

Ouaternion

The quaternion obeys the kinematic equation of motion [2]:

_l = (1/2)nq

" 0 coz

-caz 0

t=

COy -Co x

-¢0 x -COy

co = [I]-I(H- hwj)

where

-COy COx

COx coy

0 coz

-coz 0

is the skew-symmetric matrix

h w - wheel momentum (N-m-sec)

j - unit vector along the y-axis.

Using this quaternion, a direction cosine matrix can be generated:
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AMATRIX =
q2 _q_ _q2 +q]

2(q_q2 - q3q4)
2(q_q3 + q2q4)

2(qlq2 + q3q_)

_q2 + q2 _ q2 + q2

2(q2q3 - qlq4)

2(qlq3 -q2q4) ]

2(q2q3 + qlq4) J_q_ _ q_ + q32+ q2

This matrix and its transpose are used to transform vectors from the inertial frame

to the body frame and vice versa. This process is used in the sensor models in the

simulation.

Sensors

The spacecraft ephemeris is generated by integrating the equations of

motion including the perturbations due to nonspherical earth gravity effects and

aerodynamic forces.

The sun vector in inertial frame is used to generate the sun vector in body

frame and for attitude determination. It is computed using 1985 coefficients.

The magnetometer reading includes the earth's magnetic field, computed

using a 10th order spherical harmonic magnetic field model [2], and the magnetic

field produced by the torquer bars. The contamination due to the torquer bars is

approximated by modelling the torquer bar as a dipole. For thin cylindrical bar

magnets, the distance between the two poles of the dipole is approximately five-

sixths the length of the magnet [6] (the torquer bar in our case). A contamination

matrix is formed based on the contamination due to each bar in each of the axes of

the three-axis magnetometer.

Results

The dynamic simulator has been used to simulate both the vertical

pointing mode and the orbit rate rotation mode for various orbit configurations.

These configurations include 6 PM, 9 PM, and midnight orbits, where the time is the

local time at the ascending node. The simulator also examines how the relative

motion of the sun and the earth throughout the year effects such things as the sun

pointing error and pitch loop position error.

Plots of the sun pointing error and the pitch loop position error for 6 PM,

9 PM, and midnight orbits are shown in Figures 6, 7, and 8, respectively, for the

vertical pointing mode and in Figures 9, 10, and 11 for the orbit rate rotation mode.

These simulation runs are for the winter solstice time of year. The results of the

simulation show that the five degree sun pointing requirement is met for all cases

investigated for both control modes.
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Figure 6. 6 PM Orbit - Vertical Pointing Mode
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Figure 8. Midnight Orbit - Vertical Pointing Mode
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VI. SUMMARY

The simulation results show that the on-board attitude determination and

control algorithm satisfies the attitude knowledge and control requirements. Since

the orbit rate rotation mode satisfies the spacecraft pointing requirement as well as

the velocity vector avoidance criterion, this mode is recommended as the base

control mode for normal operation.
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